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Abstract. We present M extended quasi-classie;ll theory of the perpendicular trmspon of 
electrons though mgnetic multilayers. The two-point conductivity and the perpendicular 
resistivity are mn;llytidy studied by treating the spin-dependent scatbring at interfaces as bulk 
asymmetric scattering within mixed interbyerr. The results obtained arr shown to be equivalent 
lo those derived from the quantum method, indicating that here is a direct connection between 
the Boltzmann and the Kubo approaches. 

There has been great interest in the giant magnetoresistance (GMR) of metallic magnetic 
multilayers composed of a ferromagnetic film alternated with a non-magnetic film. A large 
negative GMR for currents in the plane (CIPS) of the layers was found first in Fe/Cr multilayers 
[1,2] and subsequently in many other magnetic multilayers. Recently, a giant MR has been 
observed also with the currentS perpendicular to the plane (CPPs) of the layers in Co/Ag, 
Co/Cu and Fe/Cr multilayers [3,4]. 

Intensive theoretical studies of the giant M R  have been made [5-201. Of these the 
two most influential theories are the quasi-classical method [5-101 based on the Boltzmann 
equation and the quantum approach [ll-141 starting from the Kubo formula. Both of 
them attribute the GMR effect to the spin dependent scattering at interfaces and within 
ferromagnetic films. The quantum approach is regarded at present as a more mmplete 
theoretical description because it is suitable not only for the CIP m in various magnetic 
multilayers [ I l ,  121 but also for the CPP MR in infinite superlattices [13,14]. Furthermore, 
its prediction that CPP M R X I P  MR has been verified by experiments [3,4]. The quasi- 
classical approach has widely been applied to study the CIP MR problem by including the 
spin-dependent interface scattering phenomenologically in terms of transmission, reflection 
and scattering coefficients [5,6]. The Boltzmann equation approach to the CIP M R  has 
been recently developed by Valet and Fert [19], in which spin-flip relaxation and the spin 
accumulation effect me taken into account. 

In the present work we have extended the quasi-classical approach to the CPP 
conductivity in  magnetic multilayers such as FdCr superlattices and derive its analytical 
result by treating interfaces as thin regions of mixed Fe and Cr. This treatment was first 
proposed by Johnson and Camley [7] to account simultaneously for both the CIP MR and 
the overall CIP resistivity of the structure. They assumed that there is bulk asymmetric 
scattering in the mixed regions instead of asymmetric scattering at the sharp interfaces. 
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In this extended quasi-classical model the bulk and interface scattering are treated in the 
same way because the spin-dependent scattering at the sharp interfaces has been replaced 
by the bulk scattering within the mixed interlayers. In the CPP case, as a result, there are 
spin-dependent interface resistances which come from the spin-dependent bulk scattering 
within the mixed regions. This origin of the interface resistances is completely different 
from the spin accumulation effect discussed in [19]. In order to compare the extended 
quasi-classical approach with the quantum model proposed by Zhang and Levy [I31 and 
Levy and Zhang [14], the same assumption has been made that there is neither spin-flip 
scattering (i.e. independent spin-up and spin-down channels) nor a spin accumulation effect. 

Let us consider a multilayer structure, e.g. a FeKr superlattice, with a very large number 
of bilayers stacked along the z direction. Each bilayer is composed of an Fe film and a 
Cr film separated by a thin film of mixed Fe and Cr. For a uniform electric field applied 
along the z direction, because of the inhomogeneity of the layered structures, the internal 
field varies from one layer to the next so that the magnitude E of the total electric field 
perpendicular to the layers depends on the position in the z direction [13]. In this case the 
Boltzmann equation is given by 

L Sheng and D Y Xing 

Here fo is the equilibrium distribution function, &(U, z) is the correction to the distribution 
function and r,(z) is the z-dependent relaxation time due to bulk scattering. Following 
Johnson and Camley [7], we set r,(z) equal to ?#e) for z on the Fe films and to rs(M) for 
z within the mixed regions at interfaces, both of them being spin dependent, and to be equal 
to r(Cr) (spin independent) for z on the Cr films. In the present model, since the effective 
interface scattering has been taken into account in the mixed regions, we can assume that 
electrons pass freely through the boundaries between the mixed region and the Fe or Cr film, 
at which there is neither reflection nor scattering. The differential equation (1) is exactly 
solvable. Its general solution is easily shown to have the following path-integral form: 

(2) 
ayo 

g,(u,z) = T(z,z ' )g , (u,z ' )+ d~Tr(z,u)eE(u)-  LIZ a& 
with 

T,(z,z') = e x p (  - ~ , z d u [ ~ ~ ( u ) u z l ~ '  1 . (3) 

For multilayers with a very large number of bilayers, the surface scattering has little effect 
on the resistivity. Thus, the boundary conditions at the two outer surfaces are of no 
importance; instead we use periodic boundary conditions, ~ ( z )  = rs(z + m L )  with L 
the length of the sample in lhc z direction and m an arbitrary integer. It then follows that 
&(U, z) = gs(u, z - mL). Taking z' = z - m L  in equation (2) and using the periodic 
boundary condition for gs(u, z), one finds that 

It is easy to see from equation (3) that lim,L,,[T,(z,z - m L ) ]  = 0 for U, > 0 and 
lim,,,-,[T,(z, z - m L ) ]  = 0 for U, < 0. By the use of the two limits, we obtain 
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with O(x) the unit step function. It is convenient to introduce a diagonal two-point 
conductivity tensor [20] to describe the electrical linear response of the system to an external 
elecbic field. Its CPP component u:(z, z’) is defined by 

m 

J:(z) = lmdz’o:(z, z’)E(z’) (6) 

where J:(z) is the spin- and z-dependent current density along the z direction. On the other 
hand, the CPP current density can he obtained by averaging over the electron distribution: 

J:(z) = e m  d 3 u g s ( ~ , ~ ) u r .  (7) 3 J  
Substituting equation (5 )  into equation (7) and then comparing it with equation (6),  one 
finds that 

u:(z, z’) = e2m3 / d3u T,(z, z’)-u,[O(u,)O(z - z‘) - O(-u,)O(z’ - 211. 

This integral is evaluated to give 

(8) afo 
as 

u:(Z, 2’) = (~CD/~)E~(IXS(Z) - xs(Z’)l) (9) 

Here &(U) = UF?~(U) is the mean free path which depends not only on spin but also on 
position in the z direction with up the Fermi velocity. CD = ne2/muF with n the density of 
conduction electrons 1201. E,,,(*) = SIm df exp(--xf)/P is the exponential integral function 
of order m. Equation (9) is one of the major results of this work. It is straightforward to 
show that the present result for u:(z, z’) derived from the extended quasi-classical approach 
is identical with that obtained from the Kubo formula in real space (equation (17) of [20]). 

After obtaining the CPP component of the two-point conductivity tensor, we now 
calculate the CPP conductivity. Since spin-flip scattering is neglected in the present model, 
each spin direction contributes to the current independently and the total conductivity is the 
sum from each spin direction. From the equation of continuity for current, one finds that 
a.($(z)/az = 0. This implies that J:(z) is a constant independent of z .  However, E ( z )  is 
not uniform, having different values for the films of Fe and Cr as well as the mixed region. 
Thus, the CPP conductivity is defined as ul= .l:)/l? where l? = J,” E(z) d z / L  is the 
average electric field over the length of the sample in the z direction. By dividing both 
sides of equation (6)  by LA,(z) and then integrating over z within the whole system, one 
finds that 

where 
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is the inverse self-averaging free path with d; the thickness of the ith layer and hi,y 
the mean free path for electrons with spin s in the ith layer. The above summation 
extends over all layers including the mixed interlayers. From the periodic boundary 
condition used above, it follows that there is a periodicity of the two-point conductivity: 
rk(z, z') = uk(z + m L ,  z' + mL).  If this is taken into account, the double integral on the 
right-hand side of equation (11) can be rewritten as 

L Sheng and D Y Xing 

With the aid of equations (9) and (10) the integral over z is given by 

which is easily evaluated to give 
J$ = C&I?/Z, and so the CPP resistivity is given by 

It then follows from equations (11) and (12) that 

where pis  = 2mup/neZb;, is the resistivity of the ith layer for the current channel with 
spin s. Equation (15) is a well known formula for resistances in series, i.e. the actual 
resistance for a current channel can be regarded as a series of resistance of length d,.  This 
conclusion coincides with that obtained by Zhang and Levy [13], indicating that there is  
a close connection between the quasi-classical and quantum approaches. The recent work 
of Valet and Fert [I91 also shows that, for layer thicknesses much shorter than the spin 
diffusion length, the CPP resistance of a multilayer can be calculated by use of a simple 
series summation of resistances due to the ferromagnetic and non-magnetic layers plus 
'interface resistances'. Since two current channels for spin-up and spin-down electrons are 
assumed to contribute independently, the total conductivity is the sum from each channel 
and the total resistivity is given by p~ = 2muF/[ne2(h+ + i-)] where h+(i-)  is the self- 
averaging free path for the spin-up (spin-down) channel. The formula for a network of 
resistors connected in series has already been used for the interpretation of experimental 
results on Ag/Co and AgSdCo multilayers [3]. 

In what follows we wish to compare the present result for hs vdh  that derived from the 
quantum approach [14]. Taking an example, we consider an FdCr periodic superlattice 
with an Fe film of thickness a and a Cr film of thickness b separated by a mixed 
interlayer of thickness d .  The mean free paths in three types of film are %(Cr) = uFr(Cr), 
&(Fe) = uFr,(Fe) and h,(M) = uFrs(M). For the ferromagnetic configuration the spin- 
dependent &(Fe) and h,(M) remain unchanged in all the Fe films and the mixed interlayers. 
With the aid of these parameters, equation (12) reduces to 

where the factor 2 comes from the fact there are two Fe-Cr interfaces adjacent to each 
Fe film. For the antiferromagnetic configuration the period of the magnetic unit cell is 
Z(u + b + 2d)  and equation (12) becomes 



Perpendicular transport rhrough mefallic magnetic superlattices 7253 

Here the summation over s includes s = + and - because the two adjacent Fe films in a 
magnetic unit cell have opposite magnetization directions. In order to connect equations (16) 
and (17) with equation (20) of [I41 the mean free paths defined above are taken as 

h(Cr) = hb 

&(Fe) = h / ( l +  P z  + 2Pcs) (18) 

h(M)/d = hL/(l+ p 2  + 2 p h )  

with c+ = 1 and e- = -1. All the parameters on the right-hand side of the above 
equations were defined in [14], in which p stands for the ratio of spin-dependent to spin- 
independent scattering for both the interfaces and the bulk. Substitution of equation (IS) 
into equations (16) and (17) brings us to the result for the inverse self-averaged free path 

with 

where B = 0 for the ferromagnetic configuration and 0 = z/2 for the antiferromagnetic 
configuration. Since d is much smaller than a + b, we have a + b + 2d Y a + b. Under 
this approximation, equations (19)-(21) are found to be just the same as equation (20) of 
[14]. This means that, starting from the Boltzmann equation, one can obtain the same result 
for the CPP resistivity as that derived from the Knbo formula as long as the spin-dependent 
scattering at the interfaces is properly treated. 

The present theory is not confined to periodic infinite superlattices. It is also suitable 
for non-periodic or finite multilayers provided that L,  the length of the sample in the 
z direction, is much greater than h,. If the condition L >-> i., is not satisfied, the 
present result becomes invalid. In this case, one should replace the outgoing boundaly 
conditions by the Dirichlet boundary condition [19]. It was proposed [ 161 that the Landauer- 
Buttiker scattering formalism can be used to calculate the CPP resistance of microstructured 
mu1 tilayers. 

Summarizing, in this work we develop an extended quasi-classical approach to the CPP 
transport in magnetic multilayers on condition that L >> is. Explicit expressions for the 
CPP components of the two-point conductivity tensor and the self-averaged free paths have 
been derived. They are shown to be equivalent to those obtained from the Kubo formula. 
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